NR AHVV

AU Marcotte,E.M.; Pellegrini,M.; Thompson,M.J.; Yeates,T.O.; Eisenberg,D.

TI A combined algorithm for genome-wide prediction of protein function

QU Nature 1999 Nov 4; 402(6757): 83-6

KI Nature. 1999 Nov 4;402(6757):23, 25-6. PMID: 10573411

PT journal article

AB The availability of over 20 fully sequenced genomes has driven the development of new methods to find protein function and interactions. Here we group proteins by correlated evolution, correlated messenger RNA expression patterns and patterns of domain fusion to determine functional relationships among the 6,217 proteins of the yeast Saccharomyces cerevisiae. Using these methods, we discover over 93,000 pairwise links between functionally related yeast proteins. Links between characterized and uncharacterized proteins allow a general function to be assigned to more than half of the 2,557 previously uncharacterized yeast proteins. Examples of functional links are given for a protein family of previously unknown function, a protein whose human homologues are implicated in colon cancer and the yeast prion Sup35.

MH *Algorithms; Colorectal Neoplasms/etiology; Evolution, Molecular; Fungal Proteins/classification/genetics/*physiology; Human; Phylogeny; Prions/classification/physiology; RNA, Messenger/biosynthesis; Saccharomyces cerevisiae; Support, Non-U.S. Gov't; Support, U.S. Gov't, Non-P.H.S.

AD Molecular Biology Institute, UCLA-DOE Laboratory of Structural Biology and Molecular Medicine, University of California, Los Angeles 90095, USA

SP englisch

PO England

EA pdf-Datei

Autorenindex - authors index
Startseite - home page